Search results for "scalar [resonance]"
showing 10 items of 45 documents
Introduction to General Duality Theory for Multi-Objective Optimization
1992
This is intended as a comprehensive introduction to the duality theory for vector optimization recently developed by C. Malivert and the present author [3]. It refers to arbitrarily given classes of mappings (dual elements) and extends the general duality theory proposed for scalar optimization by E. Balder, S. Kurcyusz and the present author [1] and P. Lindberg.
Strange and charm mesons at FAIR
2010
Presented at the XXXI Mazurian Lakes Conference on Physics, Piaski, Poland, August 30–September 6, 2009.
(B)over-bar(0), B- and (B)over-bar(S)(0) decays into J/psi and K (K)over-bar or pi eta
2015
12 pages.- 6 figures.- v2: discussion added, references added
Comparing the relative volume with a revolution manifold as a model
1993
Given a pair (P, M), whereM is ann-dimensional connected compact Riemannian manifold andP is a connected compact hypersurface ofM, the relative volume of (P, M) is the quotient volume(P)/volume(M). In this paper we give a comparison theorem for the relative volume of such a pair, with some bounds on the Ricci curvature ofM and the mean curvature ofP, with respect to that of a model pair\(\left( {\mathcal{P},\mathcal{M}} \right)\) where ℳ is a revolution manifold and\(\mathcal{P}\) a “parallel” of ℳ.
A comparison theorem for the mean exit time from a domain in a K�hler manifold
1992
Let M be a Kahler manifold with Ricci and antiholomorphic Ricci curvature bounded from below. Let ω be a domain in M with some bounds on the mean and JN-mean curvatures of its boundary ∂ω. The main result of this paper is a comparison theorem between the Mean Exit Time function defined on ω and the Mean Exit Time from a geodesic ball of the complex projective space ℂℙ n (λ) which involves a characterization of the geodesic balls among the domain ω. In order to achieve this, we prove a comparison theorem for the mean curvatures of hypersurfaces parallel to the boundary of ω, using the Index Lemma for Submanifolds.
Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux
2016
We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints are defined based on data collected from non-local in space and/or in time observations of the flow. We propose a theoretical analysis and discretization framework that permits to include different data acquisition strategies; a numerical comparison is provided. Nonlocal constraint allows to model, e.g., the irrational behavior (" panic ") near the exit observed in dense crowds and the capacity drop at tollbooth in vehicular traffic. Existence …
Geometry and analysis of Dirichlet forms (II)
2014
Abstract Given a regular, strongly local Dirichlet form E , under assumption that the lower bound of the Ricci curvature of Bakry–Emery, the local doubling and local Poincare inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of E coincide; (ii) the Cheeger energy functional Ch d E is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio–Gigli–Savare to be bounded from below. This together with some recent results of Ambrosio–Gigli–Savare yields that the heat flow gives a gradient flow of Boltzman–Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada's duality …
On nonimmersibility of compact hypersurfaces into a ball of a simply connected space form
1996
We give a nonimmersibility theorem of a compact manifold with nonnegative scalar curvature bounded from above into a geodesic ball of a simply connected space form.
A Quantitative Analysis of Metrics on Rn with Almost Constant Positive Scalar Curvature, with Applications to Fast Diffusion Flows
2017
We prove a quantitative structure theorem for metrics on $\mathbf{R}^n$ that are conformal to the flat metric, have almost constant positive scalar curvature, and cannot concentrate more than one bubble. As an application of our result, we show a quantitative rate of convergence in relative entropy for a fast diffusion equation in $\mathbf{R}^n$ related to the Yamabe flow.
Comparison theorems for the volume of a geodesic ball with a product of space forms as a model
1995
We prove two comparison theorems for the volume of a geodesic ball in a Riemannian manifold taking as a model a geodesic ball in a product of two space forms.